Ultra-Fast Label-Free Serum Metabolic Diagnosis of Coronary Heart Disease via a Deep Stabilizer
Mengji Zhang,
Lin Huang,
Jing Yang,
Wei Xu,
Haiyang Su,
Jing Cao,
Qian Wang,
Jun Pu,
Kun Qian
January 2021
Abstract
Although mass spectrometry (MS) of metabolites has the potential to provide real-time monitoring of patient status for diagnostic purposes, the diagnostic application of MS is limited due to sample treatment and data quality/reproducibility. Here, the generation of a deep stabilizer for ultra-fast, label-free MS detection and the application of this method for serum metabolic diagnosis of coronary heart disease (CHD) are reported. Nanoparticle-assisted laser desorption/ionization-MS is used to achieve direct metabolic analysis of trace unprocessed serum in seconds. Furthermore, a deep stabilizer is constructed to map native MS results to high-quality results obtained by established methods. Finally, using the newly developed protocol and diagnosis variation characteristic surface to characterize sensitivity/specificity and variation, CHD is diagnosed with advanced accuracy in a high-throughput/speed manner. This work advances design of metabolic analysis tools for disease detection as it provides a direct label-free, ultra-fast, and stabilized platform for future protocol development in clinics.
© 2021 The Authors. Advanced Science published by Wiley-VCH GmbH
Publication
Advanced Science
Post-Doc, School of Engineering and Applied Sciences